Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
Erythrina caffra is a traditional plant used to treat cancer and inflammation. The study aimed to assess and isolate anticancer compounds from E. caffra bark. The plant material was extracted sequentially in n-hexane, dichloromethane, ethyl acetate and methanol. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 3-(4,5-di methyl thiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to evaluate the crude extracts’ antioxidant and anticancer activities, respectively. Column chromatography was used to purify the potent extracts of the stem bark in order to isolate the bioactive compounds. The crude extracts of the E. caffra bark demonstrated antioxidant and anticancer activity, with the dichloromethane (DCM) extract producing the most favorable activity. Three compounds, namely Hexacosanyl isoferulate, Tetradecyl isoferulate, and 1-Heneicosanol, were detected in fractions from the DCM extract. All the isolated compounds showed significant anticancer potential, with the hydroxycinnamic acid compounds showing better anticancer effects in the cervical (HeLa) and breast cancer (MCF-7) cells. The compounds showed greater activity than even the standard drug, 5-fluorouracil, in the MCF-7 cells, with the tetradecyl isoferulate and hexacosanyl isoferulate fractions having IC50 values of 123.62 and 58.84 μg/mL, respectively. The compounds were observed to be capable of triggering caspase cascade events, leading to apoptotic cell death. Overall, E. caffra extracts contained important bioactive compounds that induced apoptotic cell death in HeLa and MCF-7 tumor cells, warranting further investigations in vitro and in vivo....
Mosquitoes pose a significant problem worldwide because of the diseases they transmit. Due to its antimicrobial and disinfectant properties, Commiphora myrrha (C. myrrha) has long been a popular choice in traditional medicine. This study aimed to extract C. myrrha using three different solvents—methanol, acetone, and chloroform—to identify their biochemical components and assess their larvicidal activity. The extracts were analyzed using gas chromatography–mass spectrometry, and their effects were evaluated against Aedes aegypti. We identified 29, 41, and 19 phytoconstituents in the acetone, methanol, and chloroform extracts, respectively, with most belonging to the sesquiterpene and phenol categories. Larval mortality rates were recorded as follows: chloroform (100%), methanol (90%), and acetone (95%) extracts of C. myrrha at a concentration of 1000 ppm, 24 h post-treatment. After 72 h, the C. myrrha extracts showed effectiveness with LC50 values of 118.33, 127.67, and 142.13 ppm for chloroform, acetone, and methanol, respectively. The chloroform extract was the most effective in reducing the average number of eggs laid per day (234 eggs) compared to the untreated control group (1513 eggs) at 1000 ppm. These findings provide scientific evidence of the larvicidal efficacy of C. myrrha extracts and serve as valuable resources for developing plant-based pharmaceuticals....
Extracts, fractions and the pure compound epifriedelanol of the medicinal plant Synadenium glaucescens have antibacterial properties. Herbal products are generally considered less prone to resistance development than conventional antimicrobials, as they contain multiple compounds, which makes bacteria less likely to develop resistance. However, data supporting this notion are lacking. This study evaluated the development of resistance in Staphylococcus aureus subjected to extract, fractions and epifriedelanol of S. glaucescens. It also identified S. aureus fitness genes contributing to intrinsic resistance to extract of S. glaucescens. Fluctuation and gradient concentration assays were used to determine mutation rates and growth adaptation, respectively, which were lower following exposure to growth in crude extract than the pure compound epifriedelanol. By subjecting 1920 single gene mutants from the Nebraska Transposon Mutant Library to growth in the presence of extract of S. glaucescens, 12 genes were identified as important for natural resistance in S. aureus JE2; however, only mutation in the hemB gene decreased the minimum inhibitory concentration by greater than 4-fold (64-fold). In conclusion, purifying active antimicrobial compounds from S. glaucescens and using them as antibacterial substances as an alternative to crude extract increased the risk of resistance development. Further, the gene hemB appears to have a significant role in the natural resistance to the extracts obtained from S. glaucescens in this study....
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from G. lutea leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5–65 min), ethanol concentration (10–90% v/v), liquid-to-solid ratio (10–50 mL/g), and temperature (20–80 ◦C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% v/v ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 ◦C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized G. lutea leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material....
This study aimed to evaluate the inhibitory potential of phenolic-rich extracts from selected medicinal plants belonging to the Lamiaceae and Asteraceae families against the furin protease enzyme, a key target in viral and oncogenic pathways. Extracts of Origanum vulgare, Thymus vulgaris, Mentha piperita, Mentha spicata, Salvia officinalis, and Silybum marianum were prepared using hexane, chloroform, and ethyl acetate. Phenolic compounds were quantified using High-Performance Liquid Chromatography (HPLC). Furin inhibition was assessed spectrophotometrically and analyzed statistically with multivariate approaches. The chloroform extract of Origanum vulgare exhibited 97.44 ± 0.12% inhibition, while the ethyl acetate extract of Mentha spicata showed 97.44 ± 0.08% inhibition. Epicatechin and rutin displayed significant synergistic effects, while naringenin negatively affected inhibition (p < 0.05). Solvent polarity significantly influenced phenolic diversity and biological activity, with ternary combinations showing 33% higher inhibition than single compounds. These findings highlight phenolic blends as promising natural furin inhibitors, with chloroform being optimal for broad-spectrum extraction....
Loading....